"Development of a sustained release, high absorption and stable system based on microencapsulated green propolis standardized extract (EPP-AF[®]) – i-CAPs"

Andresa A. Berretta¹, Jéssica A. Lima¹, Isabella S. Gonçalves², Soraya I. Falcão³, Ricardo Calhelha³, Lilian Barros³, Nathália U. Ferreira¹, Nathaly A. Alcazar¹, Luana Zamarrenho, Juliana Correa¹, Hernane S. Barud³, David D. Jong⁴, Jairo K. Bastos⁵, Miguel Vilas-Boas³

¹R&D Department, Apis Flora Indl. Coml. Ltda., Ribeirão Preto, Brazil; ²UNIARA – University of Araraquara, Araraquara, Brazil; ³Bragança Polytechnic Institute, Portugal, ⁴Faculty of Medicine of Ribeirão Preto, University of São Paulo, Brazil; ⁵Faculty of Pharmaceutical Sciences de Ribeirão Preto, University of São Paulo, Brazil.

Brazilian Red propolis

Poplar propolis

Propolis Raw Material

Propolis Extract - Liquid

Propolis Extract – Semi-Solid

Propolis Extract – Powder

Receipt - Selection

Extraction Process

- Maceration
- Percolation
- Dynamic Maceration
- Ultra-sound
- Microwave
- Super Critical Extraction
- Others

Extraction Solvent

Technological Process

- Emulsifying;
- Compression;
- Mixture;
- Filling
- Other

WITH Food Additives / Solvents / Emulsifiers, etc.

WITH Food Additives / Excipients / Carriers

Without Food Additives / Excipients / Carriers

Technological Process

- Solvent Evaporation;
 - Freezing;
 - Wax Elimination;
 - Freeze Drying;
 - Spray Drying;
 - Other

PROPOLIS extract

Propolis possess several functional activities Alcoholic Extract is the most Traditional Strong smell, taste and collor Ethanol is undesirable by Consumers

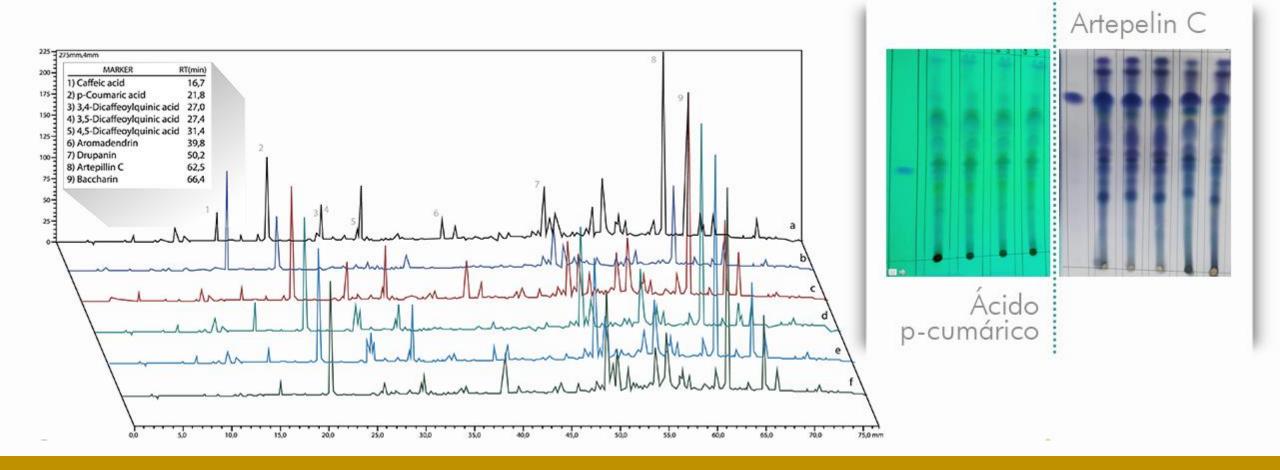
Microencapsulation

Protect the actives from Propolis Mask smell, taste and collor Suitable for several different presentations Improve Stability Increase Absorption

BRAZILIAN PROPOLIS EPP-AF

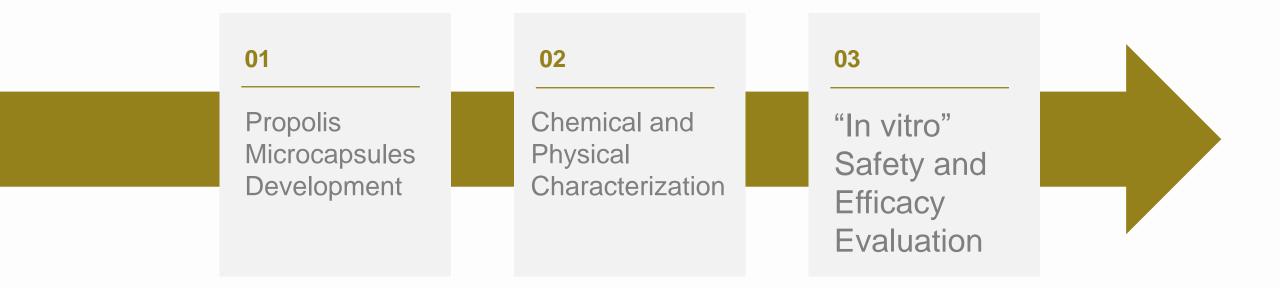
BRAZILIAN PROPOLIS

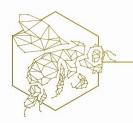
Bees & Biodiversity



Bee (Apis mellifera africanized)

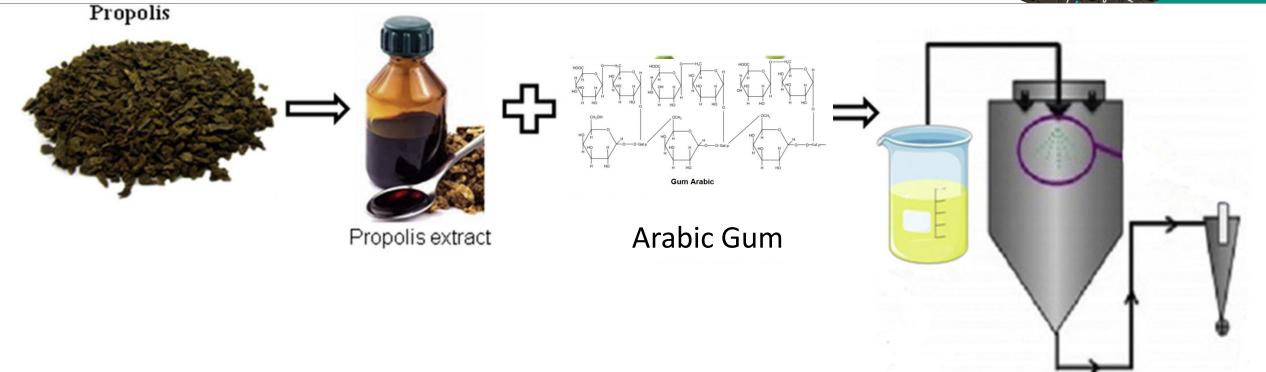
EPP-AF® Batch to batch reproducibility


METHODOLOGY



METHODOLOGY

Development & Characterization

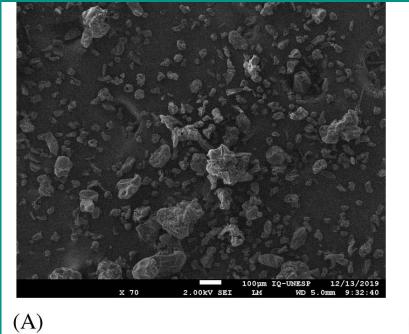


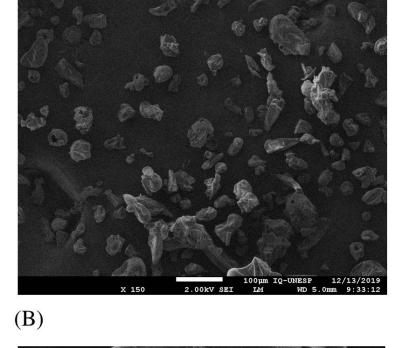
EPP-AF^(R) MICROCAPSULES

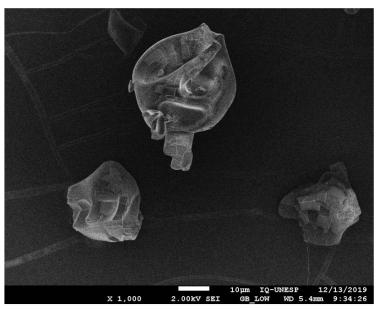
Development & Characterization

- EPP-AF^(R) raw material *blend*
- EPP-AF Alcoholic Extraction and Emulsion Preparation with Arabic Gum;
- Dryness using Spray Dryer Technology (Marquiafável et al. 2015)

RESULTS

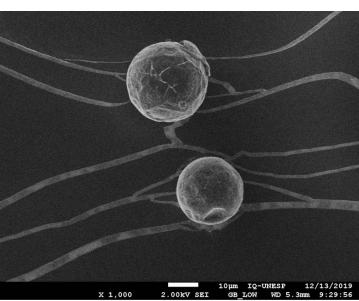

01. Chemical and Physical Characterization


02. In vitro Biological Properties




MEV ENCAPSULANT

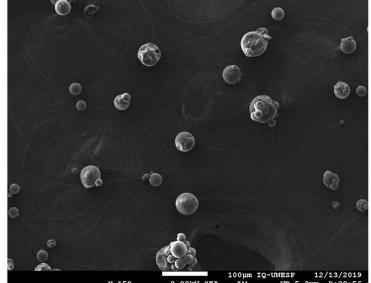
Photomicrographs for Arabic gum (A) Magnified 70x; (B) Magnified 150x. (C) Magnified 1000x e (D) Magnified 3500x.


(D)

(C)

MEV Propolis EPP-AF Microcapsules

Photomicrographs for Propolis standardized extract EPP-AF^(R) loaded microcapsules (A) Magnified 70x; (B) Magnified 150x. (C) Magnified 1000x e (D) Magnified 3500x.

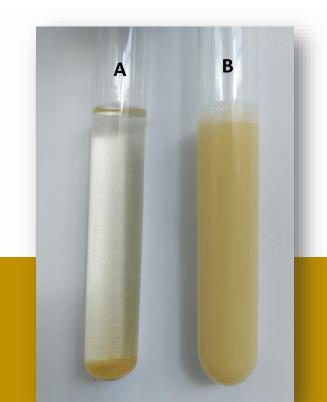


12/13/2019

(B)

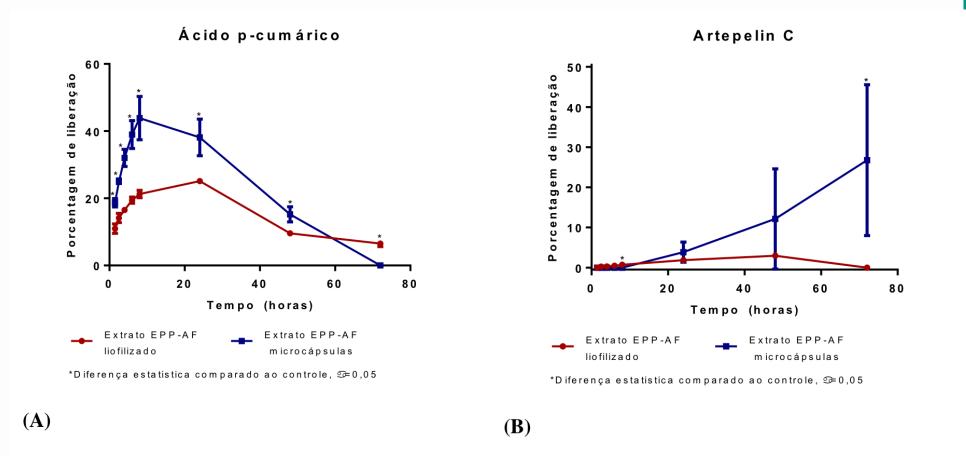
(D)

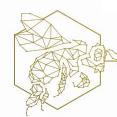
0 2.00kV SEI LM WD 5.0mm 9:28:56


 A 2010 SE
 10 100 SE

 A 2010 SE
 10 100 SE

(C)


ADVANTAGES


- (A) Dispersion of EPP-AF extract free (lyophilized) and
- (B) EPP-AF loaded microcapsules, in the concentration equivalent to 0.5% (w/v) of propolis dry matter in water.

%ME = 93.7 ± 0.7

SUSTAINED RELEASED SYSTEM

Bactericidal Minimum Concentration (BMC) – results expressed as propolis dry matter (mg/mL) (n=3) - *Dispersion of the sample in hydro alcoholic solution* 40%v/v

Samples Samples	Bactericidal Minimum Concentration ± Standard Deviation					
	E .coli	S. aureus				
EPP-AF free	27.50 ± 0.00	3.44 ± 0.00				
EPP-AF loaded Microcapsules	27.50 ± 0.00	3.44 ± 0.00				

Bactericidal Minimum Concentration (BMC) – results expressed as propolis dry matter (mg/mL) (n=3) - *Dispersion of the sample direct in the Müller Hinton Medium*

Samplas		Bactericidal Minimum Concentration ± Standard Deviation								
Samples	E.coli	K. pneumarie	P. aruginosa	S. aureus	S. epidermidis	MRSA				
EPP-AF free	100.00 ± 0.00	91.67 ± 0.00	91.67 ± 0.00	55.00 ± 0.00	55.00 ± 0.99	110.00 ± 0.00				
EPP-AF loaded Microcapsules	55.00 ± 0.00	27.50 ± 0.00	33.67 ± 0.00	1.72 ± 0.00	6.88 ± 1.98	5.73 ± 1.98				

Antioxidant Activity of Propolis and Propolis microcapsules using FRAP and DPPH methods (n=3, average \pm DP).

Samples	FRAP (µmol Fe ^{II} / mg propolis dry matter) ± SD	DPPH (IC50) (µg propolis dry matter /mL) ± SD	
EPP-AF ^(R) Propolis Free	$2,873 \pm 0,045$	$6,500 \pm 0,062$	1
EPP-AF ^(R) Propolis Microcapsules	$2,654 \pm 0,062*$	$7,342 \pm 0,058*$	
*Statistical different (p<0,05) –	comparison of EPP-AF ^(R) loaded microc	capsules with the correspondent EPP-A	$AF^{(R)}$

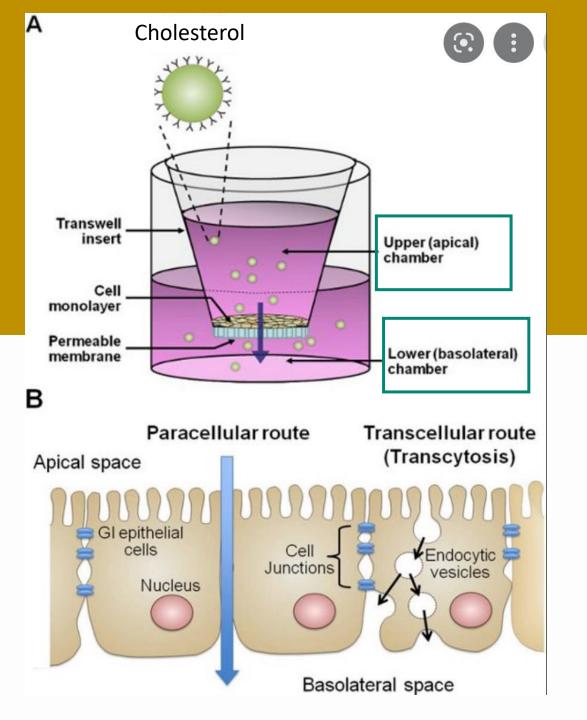
Limitation of the System and the Methodology

Samples were all solubilized in ethanol 70% and US for 30 minutes; Time of reaction around 60-90 minutes

ANTITUMORAL AND ANTI-INFLAMMATORY EFFECTS

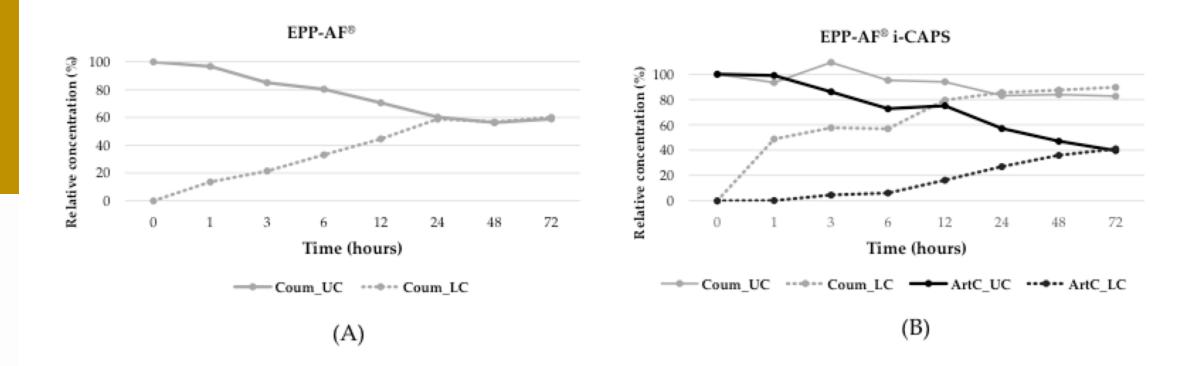
Cytotoxic and anti-inflammatory activity of EPP-AF[®] Propolis free extract and EPP-AF[®] microcapsules extract (n=3, average \pm SD).

	Cyto	toxic activity	(GI _{50,} μg/mL	Anti-inflammatory activity (IC ₅₀ , μg/mL)	
	AGS	Caco2	MCF-7	PLP2	RAW264.7
EPP-AF[®] Free	184 ± 2^{a}	241 ± 20^{a}	296 ± 23^{a}	146 ± 11^{a}	$86\pm3^{\mathrm{a}}$
EPP-AF [®]	$154{\pm}1^{b}$	117±1 ^b	271±25 ^a	156±4 ^a	$59{\pm}0.1^{\rm b}$
Microcapsules					
Ellipticine	$1.23 \pm 0.03^{\circ}$	$1.21 \pm 0.02^{\circ}$	1.02 ± 0.02^{b}	$1.4{\pm}0.1^{b}$	-
Dexametasone	-	-	-	-	$6.3 \pm 0.4^{\circ}$


 GI_{50} – Concentration that inhibited 50% of the net cell growth; IC_{50} – Sample concentration providing 50% of inhibition of NO

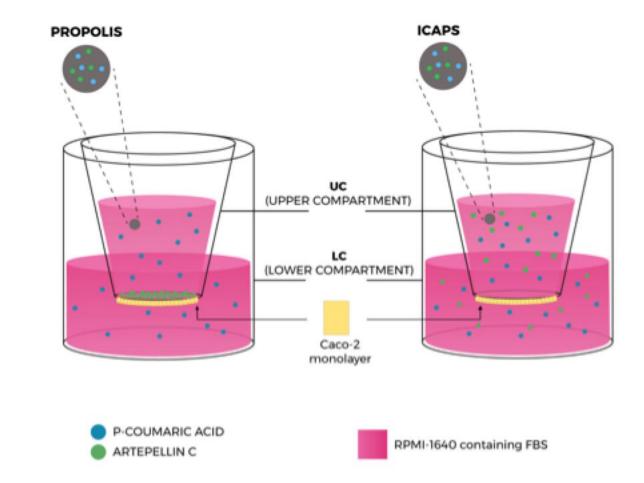
production. Different letters in each row represent statistically significant differences with a significance of 5%.

HYPOCHOLESTEROLEMIC ACTIVITY


HYPOCHOLESTEROLEMIC ACTIVITY

Hypocholestorolemic activity of EPP- $AF^{\mathbb{R}}$ Free extract and EPP- $AF^{\mathbb{R}}$ Microcapsules through Caco2 cell monolayers transport assay.

		Cholesterol (µM)	Cholesterol (%)
Control	UC	$26.86{\pm}0.80^{a}$	53.7±1,60 ^a
	LC	$21.82{\pm}1.03^{\circ}$	$43.6 \pm 2.05^{\circ}$
EPP-AF [®] Free	UC	$35.96{\pm}0.37^{\rm b}$	71.9±0.75 ^b
	LC	13.29±0.28 ^в	26.6±0.57 ^в
EPP-AF [®]	UC	$39.06{\pm}0.40^{\circ}$	$78.1 \pm 0.79^{\circ}$
Microcapsules	LC	$10.10{\pm}0.29^{\text{A}}$	20.2±0.58 ^A


UC – upper compartment; UL – lower compartment. Different lowercase letters in each row represent statistically significant differences between the upper compartments, while different capital letters in each row represent statistically significant differences between the lower compartments, both of which with a significance of 5%.

PERMEABILITY STUDIES

Figure 8 - Permeability Results of EPP-AF® and EPP-AF® i-CAPS through Caco-2 monolayer transport model (n=3, mean ± SD) for the two selected biomarkers *p*-coumaric acid (Coum) and artepillin C (ArtC). UC - UC – upper compartment; LC – lower compartment.

PERMEABILITY STUDIES

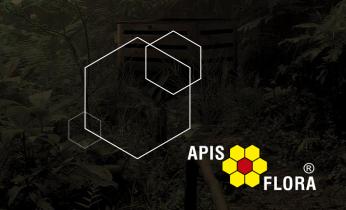


Figure 7 – Illustration of the Permeability Caco-2 monolayer transport model and results with EPP-AF® and EPP-AF® i-CAPS, including for the two selected biomarkers *p*-coumaric acid and artepillin C.

CONCLUSION

EPP-AF^(R) Microcapsules succesfully obtained; Spheric Shape and %ME of 93.7± 0.7; FIR and TGA behavior of the Arabic Gum; Both EPP-AF[®] Free and Microencapsulated offered antimicrobial and antioxidant activities; Antitumor Effects were Antihypercholesterolemic Effects were better reached by EPP-AF Microcapsule 36 months of Shelf-life Higher Absorption

APIS FLORA KIDS

iCaps Super Power

Apis Flora R&D Team

APIS FLORA Science

ANDRESA A. BERRETTA

Email: andresa.berretta@apisflora.com.br

"Propolis International Standard Proposed by ISO – an important regulatory framework for authenticity and quality requirements of the international propolis market"

Andresa A. Berretta¹ & Miguel Vilas-Boas²

¹Apis Flora Indl. Coml. Ltda., Ribeirão Preto, Brazil; ABEMEL (Brazilian Association Honey Exporters), Brazil; ²Instituto Politécnico de Bragança,Bragança, Portugal. Mainly types of Propolis

Brown – Populus spp. Green – Baccharis dracunculifolia Red – Dalbergia and Clusia spp.

Brazilian Red propolis

Poplar propolis

Brazilian green propolis

https://healthywithhoney.com/composition-of-propolis/

Opportunities

The current global supply of propolis is estimated to be 700-800 ton/year, with an market value of US\$ 700 million/year, forecasted to reach US\$ 829 million by 2027.

Challenges

Lack of Standardized Methodologies and Technical Specification Lack of Regulation in most of the countries

De Oliveira et al. 2021

© Springer Nature Switzerland AG 2021 G. W. Fernandes et al. (eds.), *Baccharis*, https://doi.org/10.1007/978-3-030-83511-8_23

Bee Propolis Specification – ISO-NP 24.381

This project was constructed by experts from 17 countries around the globe.

TThe document specified quality requirements, analytical methods, packaging, marking, labelling, as well as storage and transportation conditions for propolis produced by *Apis mellifera* bees.

De Oliveira et al. 2021

© Springer Nature Switzerland AG 2021 G. W. Fernandes et al. (eds.), *Baccharis*, https://doi.org/10.1007/978-3-030-83511-8_23

Bee Propolis Specification – ISO-NP 24.381

SAMPLES

- Sample 1 Poplar type (China)
- Sample 2 Poplar type (Portugal)
- Sample 3 Red type (Brazil)
- Sample 4 Poplar type (Romania)
- Sample 5 Green type (Brazil)
- Sample 6 Poplar type (Italy)
- Sample 7 Poplar type (Turkey)

Laboratories Involved:

Members of Inter Laboratory Proficiency**

- Belgium CARI ASBL
- Brazil APIS FLORA
- Brazil CNPLab
- China Jiangsu Collaborative Innovation Centre of Chinese Medical Industrialization
- China Joint Laboratory of Propolis Professional Committee of the China Bee Products Association
- China Technology Center of Qinhuangdao Customs
- France CTCPA
- German Intertek
- Italy Laboratory of Biochemistry and Glycobiology of Department of Life Sciences, UNIMORE
- Portugal Institute Polytechnic of Bragança
- Romania Laboratory for Quality Control of Bee Products and Bee Diseases
- Spain Laboratorios Apinevada SL
- Turkey Altiparmak Gida Sanayi Ve Ticaret A.S.
- Turkey Beeo Propolis Research and Development Center

14 applied 13 participated*

*All were approved for be part. The laboratory declined for internal problems; **Laboratories identified by alphabetic order. The identification of the laboratories were not done neither, in the technical report or in the presentation in order to avoid any kind discomfort.

Methodologies Evaluated – Annex A - K

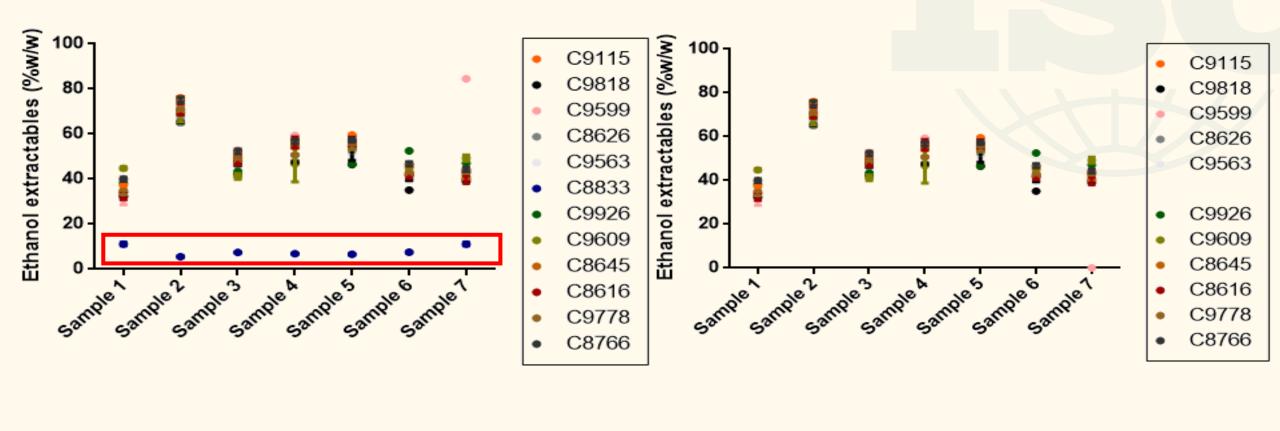
Recommended – 11 Parameters (Annex A – K)

- Ethanol Extractable (dry matter);
- Loss on Drying;
- Ash Content;
- Wax Content;
- Total Phenolic Content;
- Total Flavonoid Content (total flavone/flavonol Content);
- Total Flavonoid Content (Polyamide method);
- Chemical Characterization and Quantification of
 - Polyphenols in Poplar Propolis (LC/MS);
 - Polyphenols in Green Propolis (HPLC/DAD);
 - Polyphenols in Red Propolis (HPLC/DAD and HPLC/MS);
- Antioxidant Capacity (DPPH).

Time Line of Inter Laboratory Project

2021, Aug/Sept			2021, Dec - Deadline		
ILCP Proposal	2021, October		Deadline for Closing the	2022, Jan - Deadline	
Laboratories Application	BIPEA received and	2021, November	Results and Up-load in	Second Meeting to clarify	2022, Feb/Mar – Closing
Donators of Samples	Delivered the Samples	Laboratories received the samples and Started the execution of the protocols; Except China because Customs troubles.	the BIPEA plataform, 2021, Dec 20 ^{th (*)} First Meeting to discuss methodologies doubts.	methodologies doubts, with adjustments in the WD draft text; Deadline to upload results at BIPEA platform	on Feb, 24 th ;
					Closing Meeting, March 3-4 th .

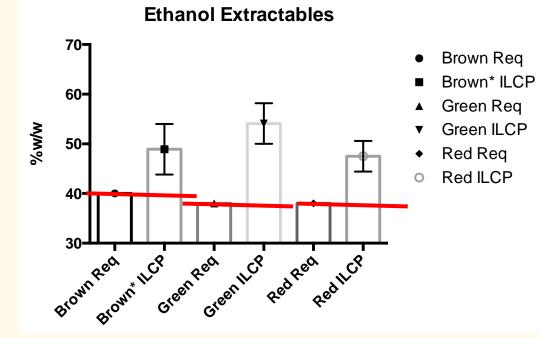
(*) With the consensus of the members, the deadline line to present the results to BIPEA was postponed in 30 days, since the 3 Chinese labs not received the samples on time. Considering the method of Annex G, the lack of these 3 laboratories could potentially affect substantially the results.


Results

Bee Propolis Specification – ISO-NP 24.381

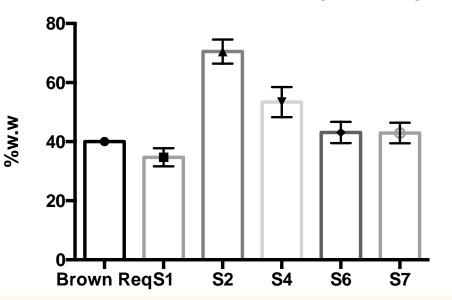
Inter Laboratory Proficiency Results

Annex A – Ethanol Extractable



Full Results

Excluding Outliers



Annex A – Ethanol Extractable – Average/SD

Presentation of the Results [averages (robust SD)] x Limits previously established

Ethanol Extractables - Poplar Samples

Presentation of the Results (Poplar) [averages (robust SD)] x Limits previously established

Table 4.2 Requirements x Results

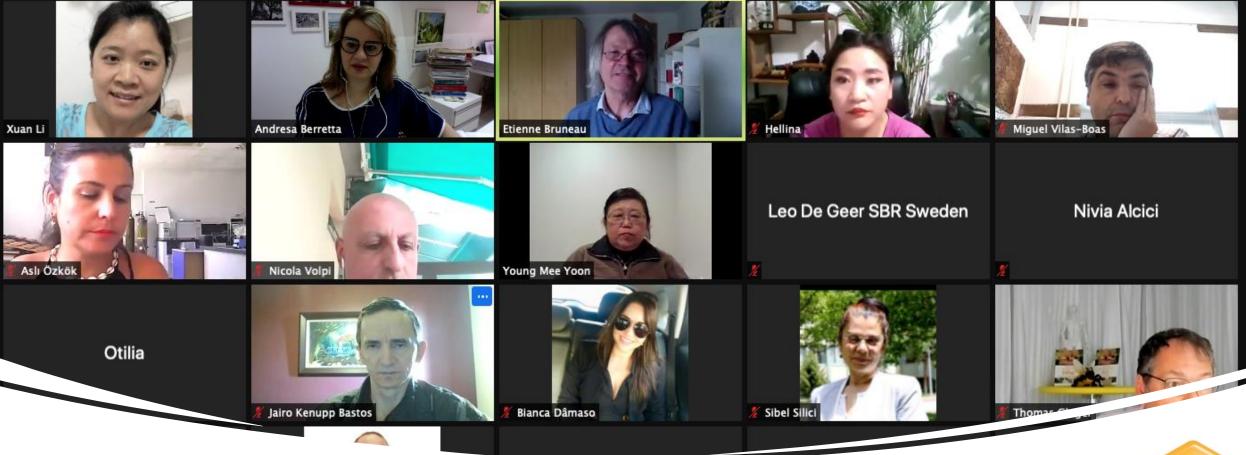
Parameters and Limits specified in the WD Average and Standard Deviation of the Results (S)

Summary – Inter laboratorial Results x Table Requirements

	Brow Propolis	Proficienc	y Samples	Green Propolis	Proficienc	y Samples	Red Propolis	Proficienc	y Samples
Method	Req	Mean	S (Xpt)	Req	Mean	S (Xpt)	Req	Mean	S (Xpt)
Ethanol extractables (as dry matter) min	40	48,9	5,1	38	54,1	4,1	38	47,5	3,1
Loss of drying (%w/w) - max	8	2,8	0,7	8	9,5	0,9	8	4,2	0,2
Ash Content (%w/w) - max	5	0,9	0,1	5,4	3,2	0,3	5,4	1,1	0,1
Wax Content (%w/w) - max	50	46,0	4,2	27,2	22,9	3,8	38	59,0	3,0
Total phenolic compounds (Folin) – min									
(%w/w) as gallic acid	10	13,2	4,5	7,6	10,9	2,4	6,5	7,9	2,4
Total phenolic compounds (Folin) – min									
(%w/w) as galangin	20	24,1	5,3	15,2	19,5	1,9	13	14,5	3,6
Total Flavonoids (or flavone/flavonol) -									
%w/w (min) as quercetin	3	5,0	1,0	1,1	3,3	0,6	0,5	4,4	0,6
Total flavonoids (Polyamide Method) - %									
w/w (min) as rutin	8	13,4	1,8	2,2	6,5	0,7	1,1	5,5	1,5
Total antioxidant capacity (DPPH) – EC50									
– maximum value (ug/mL)	25	12,3	2,3	40	14,0	2,5	50	20,7	2,2

New Proposal for the Table of Requirements

Characteristic	Min. Requirements (on a dry basis)							
	or max.	Brown propolis (<u>4.1.1</u>)	Green propolis (<u>4.1.2</u>)	Red propolis (<u>4.1.3</u>)	Test method			
Ethanol extractables of propolis (as dry mat- ter), in % mass fraction	min.	30,0	30,0	30,0	<u>Annex A</u>			
Loss of drying, in % mass fraction	max.	10,0	10,0	10,0	<u>Annex B</u>			
Ash content, in % mass fraction	max.	5,0	5,0	5,0	<u>Annex C</u>			
Petroleum ether ex- tractables of propolis (as dry matter), in % mass fraction	max.	65,0	30,0	60,0	<u>Annex D</u>			
Total phenolic com- pounds (Folin), in % mass fraction, as gallic acid ^a	min.	10,0	7,0	7,0	<u>Annex E</u>			
Total phenolic com- pounds (Folin), in % mass fraction, as galangin ^a	min.	17,0	12,0	12,0	<u>Annex E</u>			
Total flavonoids (AlCl ₃), in % mass frac- tion, as quercetin	min.	3,0	1,0	0,5	<u>Annex F</u>			
Total flavonoids (pol- yamide method), in % mass fraction, as rutin	min.	6,0	2,0	1,0	<u>Annex G</u>			
Total polyphenolics by high-performance liquid chromatography (HPLC) (poplar, green and red propolis)		Presence of: api- genin, caffeic acid, CAPE, p-coumaric acid, chrysin, fer- ulic acid, galangin, pinobanksin and pinocembrin	Presence of: caffeic acid, p-coumaric acid, 3,5-dicaffeoyilquinic acid, 4,5-dicaffeoyilquinic acid, cinnamic acid, drupanin, artepellin C and baccharin	Presence of: caly- cosin, isoliquiriti- genin, formononetin and biochanin	<u>Annex H</u> <u>Annex I</u> <u>Annex J</u>			
Total antioxidant ca- pacity (DPPH) – EC50, in μg/ml	max.	25,0	40,0	50,0	<u>Annex K</u>			


Project Leader Prof. Zetian Lv

Convenor Dra. Andresa Berretta

General Secretary TC34/SC19 Bee Products Mrs. Xuan Li

Thank You !

- presidente@abemel.com.br
- <u>mvboas@ipb.pt</u>
- atian580@163.com

